Relation Algebras As Expanded FL-Algebras
نویسندگان
چکیده
This paper studies generalizations of relation algebras to residuated lattices with a unary De Morgan operation. Several new examples of such algebras are presented, and it is shown that many basic results on relation algebras hold in this wider setting. The variety qRA of quasi relation algebras is defined and shown to be a conservative expansion of involutive FL-algebras. Our main result is that equations in qRA and several of its subvarieties can be decided by a Gentzen system, and that these varieties are generated by their finite members.
منابع مشابه
Non-regularity of multiplications for general measure algebras
Let $fM(X)$ be the space of all finite regular Borel measures on $X$. A general measure algebra is a subspace of$fM(X)$,which is an $L$-space and has a multiplication preserving the probability measures. Let $cLsubseteqfM(X)$ be a general measure algebra on a locallycompact space $X$. In this paper, we investigate the relation between Arensregularity of $cL$ and the topology of $X$. We find...
متن کاملRelation Algebras, Idempotent Semirings and Generalized Bunched Implication Algebras
This paper investigates connections between algebraic structures that are common in theoretical computer science and algebraic logic. Idempotent semirings are the basis of Kleene algebras, relation algebras, residuated lattices and bunched implication algebras. Extending a result of Chajda and Länger, we show that involutive residuated lattices are determined by a pair of dually isomorphic idem...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملRepresentability of Pairing Relation Algebras Depends on your Ontology
We consider classes of relation algebras expanded with new operations based on the formation of ordered pairs. Examples for such algebras are pairing (or projection) algebras of algebraic logic and fork algebras of computer science. It is proved in Sain{N emeti 36] that there is nòstrong' representation theorem for all abstract pairing algebras in most set theories including ZFC as well as most...
متن کاملWeighted Convolution Measure Algebras Characterized by Convolution Algebras
The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.
متن کامل